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Abstract. Subject to some conditions, the input data for the Drinfeld—-Sokolov construction of
KdV-type hierarchies is a quadrupléet, A, d1, dp), where thed; are Z-gradations of a loop
algebraA and A € A is a semisimple element of the nonzetpgrade. A new sufficient
condition on the quadruplet under which the construction works is proposed and examples are
presented. The proposal relies on splitting éhegrade zero part afl into a vector space direct

sum of two subalgebras. This permits one to interpret certain Gelfand—-Dickey-type systems
associated with a nonstandard splitting of the algebra of pseudodifferential operators in the
Drinfeld—Sokolov framework.

1. Introduction

Developing the ideas of the pioneering papers [1, 2], a general Lie algebraic framework has
recently been established in which to construct generalized KdV- and modified KdV-type
integrable hierarchies [3-5]. This formalism contains many interesting systems as special
cases [6, 7]. However, there exist some well known sytems which do not seem to fit the
approach which has been developed so far. For example, while the standard Gelfand-Dickey
hierarchies [8]

a m “ .
L=[(L» , L for L = 9" ;0! 1.1
o [(L")>0, L] + ;M (1.1)

have a well known interpretation [1], which motivated the whole theory, their ‘nonstandard’
counterparts [9-11] defined by

n—1
Dy [(L71)sq, L] for L =0""1+ Zu,ﬂ”*“ + 0 tu, (1.2)
i i=1
have, to date, resisted a similar interpretation.

In this paper we propose an extension of the above mentioned Lie algebraic framework
of constructing integrable hierarchies. This shall prove general enough to contain the
nonstandard Gelfand-Dickey hierarchies as special cases.

The Drinfeld—Sokolov construction relies on the use of a classicahbtrix [12] given
by the difference of two projector® = %(7?0, —Pg), associated with a splittingl = o + 8
of an affine Lie algebrad. To date, it has been assumed [1-5] that the subalgebyas A
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have the formx = A2 and 8 = A<° in terms of aZ-gradationA4 = @,zA" of A. The
essence of the proposal of this paper shall be to use a more geraedtix obtained by
further splitting.A°. That is we shall use

R = 3(Py — Pp) wherea = A% 4o g=A4"+4° (1.3)

in correspondence with a splittind® = «®+ 8° subject to certain conditions. The standard
construction will be recovered fgg° = {0}.

The standard and nonstandard Gelfand—Dickey systems correspond to two splittings of
the algebra of pseudodifferential operators (PDOs) that differ in the scalars being added to
the subalgebras of purely differential or purely integral operators, which is reminiscent of the
manipulation with the splittings in our construction. Since the nonstandard Gelfand-Dickey
systems are recovered from it, we sometimes refer to our construction as the ‘nonstandard
Drinfeld—Sokolov construction’. However, it should be stressed that our construction is
essentially just the standard one implemented under weakened conditions on the input data.

This paper is organized as follows. Section 2 is devoted to explaining the nonstandard
Drinfeld—Sokolov construction. In section 2.1 modified KdV-type systems are dealt with.
The construction of KdV-type systems is described in section 2.2. The nonstandard Gelfand—
Dickey systems are derived as examples in section 3. Section 4 contains our conclusions.
Throughout the paper, proofs are often omitted or kept short since they are similar to those
in the standard case.

2. A general construction of integrable hierarchies

The standard construction [1-5] associates a modified KdV-type system with a triplet
(A, A, dy) and a KdV-type system with a quadruplet, A, di, do), where thed; (i =0, 1)

are Z-gradations of an affine Lie algebrd, A € A is a semisimple element af;-
gradek > 0, and some further conditions hold in the KdV case. Below we present
a generalization of the standard construction based on a splitting of;tgeade zero
subalgebra4® into a direct sum of two subalgebras of a certain form, and weakened
conditions on the gradations.

2.1. Modified KdV-type systems
Let A be an affine Lie algebra with vanishing centre, that is a twisted loop algebra
A=10G, 1) CGRC[A A (2.1)

attached to a finite-dimensional complex simple Lie alggbraith an automorphism of
finite order [13]. LetA = &,z.A" denote @.-gradation ofA given by the eigensubspaces
of a derivationd; of A asd1(X) = nX for X € A". Consider a semisimple elemefite .4*
for somek > 0, and two subalgebrag’, 8° of .4° in such a way that

B° c Ker(adA) and AP = a4 B° (2.2)

is a linear direct sum decomposition. The subsequent construction, which reduces to that
in [1-5] for B° = {0}, defines a modified-KdV-type system for any choice of the data
(A, A, dyg; % g%. By definition, the phase space of this system is the maniélof
first-order differential operators given by

O = {L=0 +6x)+Al0(x) € AN A} (2.3)
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We use the notatiod<* = @,_;.A" etc. SinceA<* N A4>0 is a finite-dimensional space,

the field6(x) encompasses a finite number of complex-valued fields depending on the one-
dimensional space variabte We wish to exhibit a family of compatible evolution equations

on ® labelled by the graded basis elements of

C(A) := (Cent Ker(adA))>° (2.4)

which is the positively graded part of the centre of the Lie algebra(&dn). For this
we shall use the well known ‘formal dressing procedure’ based on the linear direct sum
decomposition

A = Ker(adA) + Im (adA) Ker(adA) NIm (adA) = {0} (2.5)

whose existence is guaranteed by the semisimplicith oNext we recall the main points
of this procedure in a slightly more general context than required in this section.

Lemma 1.Let j(x) € A<* be an arbitrary formal series with smooth component functions.
Consider the equation

L=00+jx)+A) > (L) =0, +h(x)+ A (2.6)
where F(x) andi(x) are required to be the formal series
F(x) e A<° h(x) € (Ker(adA))=*. (2.7

Then (2.6) can be solved fdr(x) and in terms of a particular solutiofy(x) the general
solution is determined by

edF _ qadk adFo (2.8)

where K (x) € (Ker(adA))<C is arbitrary. There is a unique solutioR(j(x)) €
(Im (adA))<°, whose components are differential polynomials in the componenfgxof

The supplementary daté, 8° do not play any role in this lemma, and the proof may be
found in [1] (see also [3, 4]). Then, for any constar¢ C(A) and any functionj (x) e A<¥
one can define

By(j) := € 2F (j) (). (2.9)

The components ofB,(j) are uniquely determined differential polynomials in the
components ofi and one hasB,(j), (3x + j+ A)] = 0 as a result ofY, (3, +h+ A)] = 0.
For a later purpose, note also that the formula

He(j) = /dxhb(j(X)) with 1, (j (x)) := (b, h(j (x))) (2.10)

yields a well-defined functional of (x) € A= if we assume that the integral of a total
derivative is zero. Heré, ) is a nondegenerate, invariant, symmetric bilinear form4n
(Such a bilinear form exists and is unique up to a constant; the déengdify(x)) is well
defined only up to a total derivative in general.) According to a standard calculation [1],
the functional derivative o, (j) defined using this bilinear form can be taken to be
8H
8—,” = By(j) for j(x) € A%, beC(A). (2.11)
J
Since the conditions of lemma 1 hold énin (2.3), we can apply the dressing procedure
to construct an integrable hierarchy on this manifold. For this we now introduce the splitting,

A=a+8 with o = A% +a° B =40+ 4° (2.12)
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using (2.2), and the corresponding classicahatrix of A,
R = 2(Pu — Pp) (2.13)

whereP,, Pg project A onto the respective subalgebrasg. By definition, the evolution
equation associated withe C(A) is given by the following vector fielq% on ®:

= [R(B(9)), £] = [Pa(By(0)), L] = —[Ps(By(0)), L]
atL = (3, +0+A)c0. (2.14)

The second and third equalities hold sind® @), £] = 0. As in the standard case, the
second equality shows th#}e belongs ta4>°. The third equality then has to be used in

order to show thata—e also belongs te4<*. The only point here is that there is a term
in Pg(By(0)) with dl grade zero, which, when commuted with could give a term with

di gradek. However, from our hypothesis in equation (2.2), this commutator vanishes.
In summary, from these equalities it follows thﬁge is a differential polynomial in the

components of (x) with values inA<¥ N 4>°, which guarantees that (2.14) makes sense as
a vector field or®. Using [B,(0), B,(#)] = 0 for alla, b € C(A) and that as a consequence
of (2.14) %Bb(e) = [R(B,(0)), By(0)], together with the modified classical Yang—Baxter
equation [12] forR, it can be shown that the vector fields associated with different elements
of C(A) commute:

[i i} =0 Va,b € C(A). (2.15)

dt, d1

The functionsh,(9) are of course the densities of corresponding conserved currents.
Having presented the algebraic construction of the hierarchy of evolution equations on

®, we now describe the Hamiltonian formulation of these equations. For this it will be

convenient to introduce a Poisson bracket on the local functionals on the space

={L=3+j(x)+Aljx) e A} (2.16)
which contains ®. A local functional f : M — C is given by f(j) =
fdx plx, j(x),..., j®(x)), where p is a differential polynomial in the components of

j whose coefficients are smooth functionsxof We let 2.~ € A denote the functional

derivative of f, and introduce the-bracket
[X,Y]r =[RX, Y]+ [X, RY] X, Y € A (2.17)

Imposing, for example, a periodic boundary conditionjén), the following formula defines
a Poisson bracket on the local functionals:

o TS s 5f  sg\ (8 . 5%
- lr () "/dx<’“ [5, 61} > <R6j’a"aj> <aj’ hR > (2-18)

The Hamiltonian vector fieldj;, corresponding tof is given by

5] (x)

1) 1)

Ssz[RS—f, L} R’[f } atL=@0,+j+A) eM. (219
J

Using the projectors associated with the decompositloa o + g+, wherea*, 8+ denote

the annihilators ok, g8 in A, we haveR' = %(Pﬁi —P,1). More explicitly, the Hamiltonian

vector field reads as

8 S )
8rj = Por [j +A’7)ﬂ8_§:| Ppr |:] + A, Py f:| + Py Ppgoy —f PﬂLPaaxa—f. (2.20)
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We now have two important statements to make.

Property 1. ® € M is a Poisson submanifold, and therefore one can trivially restrict the
Poisson bracket t®.

Property 2. The flow in (2.14) is Hamiltonian with respect to the Poisson bra¢két on
® and the Hamiltoniart{, (9) is obtained by restricting (2.10) 6.

The first statement requires one to check that(if) € A<F N A>° then§,j(x) lies in
the same space, which is readily done with the aid of (2.20). As an example, let us examine
the first term on the right-hand side of (2.20). Because of the projégtorthis term has
positive or zeral;-grade. Owing to our choice of data (2.2), the commutator hasgrade
smaller thark, and this remains true when it is projected. Each term may be studied in a
similar way. The second statement follows by combining (2.11) with (2.19).

Remark 1.0ne can naturally extend the definition of the commuting vector fi%dm the
whole manifoldM in (2.16) on which lemma 1 applies. The flows of the resulting hierarchy
on M can be written in a Hamiltonian form usifg }z in (2.18) and the Hamiltoniath, ()

in (2.10). This system oo\ is conceptually useful to consider since both the modified
KdV-type and (as we shall see) the KdV-type systems are reductions of it. In general, it is
an interesting problem to find all consistent subsystems of the hierarci ¢imat involve
finitely many independent fields.

2.2. KdV-type systems

We describe below a construction that yields systems that we call ‘systems of KdV type’.
The construction requires that data of the fog, A, dy, do; o°, %) be given, whereA,
A, d; satisfy the previous conditions alg is anotherZ-gradation of4. There are further
conditions on the data that we specify next.

We initially assume that the tw#-gradations ofd are compatible, which means that
[do, d1] = 0 and we have a bigradation gf;

A =@y nez Al Al ={X € Aldi(X) =nX, do(X) =mX} (2.21)
where superscripts/subscripts dendigdo-grades. We need the nondegeneracy condition

Ker(adA) N A5° = (0} (2.22)
which is a nontrivial condition if45° # {0}. We finally suppose that

A0 c Ao A< c Ao (2.23)
and require a splitting ofA° into a vector space direct sum of subalgebras of the form

AP = % 4 g° a® =A%, B° c Ker(adA). (2.24)

The conditions on the two gradations used in [4] (see also [3]) are stronger than (2.23)
in that they include the additional conditiad® c A. This extra condition guarantees

the existence of a splitting of the form (2.24), given &y = A° B° = {0}. In general,

the existence of a subalgebpd C Ker(adA) which is complementary tod2, in A° is

a nontrivial question. As is easy to see, a necessary condition for the existence of such a
subalgebra is that

A%, N (Ker(adA))* = {0} (2.25)
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which in particular implies that

dim(A%,) < dim(A° N Ker(adA)). (2.26)
In the derivation of system (1.2) presented in section 3.2, we have
B° = A°NKer(adA). (2.27)

Our construction of KdV-type systems will proceed quite similarly to the standard one,
except that we shall use thematrix R given by (2.12), (2.13) together with (2.24) to
define the commuting vector fields. In the case when the condididrc Ay is satisfied
the construction reduces to the standard one.

By definition, the phase space of the KdV-type system is the factor spas& where

0:={L=0,+qx) + Alg(x) € A% N A0} (2.28)
and\V is the group of ‘gauge transformations’ acting onQ according to
& L V()= Le LeQ y(x) € A5°. (2.29)

Let us present a model @ /N. Take adi-graded vector spaceé appearing in a direct
sum decomposition

AN Ao =[A, A3 + V. (2.30)
Define Qy C Q by
Qv i ={L=0c+qvx)+Algyv(x) € V}. (2.31)

Owing to the nondegeneracy condition (2.22) and the grading assumptions, the acdtion of
on Q is a free action and the following result holds.

Lemma 2.The submanifoldQ, C Q is a global cross section of the gauge orbits defining
a one-to-one model oD/A. When regarded as functions ap, the components of
qv(x) = qv(g(x)) are differential polynomials, which thus provide a free generating set of
the ring of gauge invariant differential polynomials ¢nh

Since this lemma also goes back to [1] (see also [14]),is referred to as ®rinfeld—
Sokolov gaugeTo construct a hierarchy o@/N, we first exhibit commuting vector fields
on Q by means of the dressing procedure (recall remark 1). That is fobany (A) in
(2.4), we define commuting vector fielq% on Q, similarly to (2.14), by

0
8—%‘1 =[R(By(q9)), L] = [Pu(By(q)), L] = —[Pg(Bs(q)), L]
atL =0, +qg+A) €. (2.32)

Here B, (q) is obtained from (2.9) and the splitting (2.24) is used to definby (2.12) and
(2.13). The conditions in (2.23) and (2.24) ensure that (2.32) gives a consistent evolution
equation onQ. In order to show this, first note that owing to the requirements (2.23) and
(2.24),P, projects on a space which is included.ty,. Then, the second equality shows
that ;- 0 ad belongs taA-,. Finally, as in the modified case, the third equality is used to show
that 59 also belongs tod=*.

The evolution equation defined by (2.32) has a gauge invariant meaning. Algebraically
speaking, this means th@%— induces a derivation of the ring o¥/-invariant differential
polynomials ing. The corresponding geometric statement is that the vectorg}eldn 0
can be consistently projected @y /. The projectability of— follows from the uniqueness
property of the formal dressing procedure stated by equatlon (2.8). This leads to the equality
By(e"Le7) = € B,(L)eY, wherey(x) € A parametrizes a gauge transformation and
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we put B,(L) := By(g). Then, using the definition of the-matrix, one has as in the
standard case the property

(R( By (L)) — €' R(By(q))e™”) € Ag°. (2.33)

Using this, it is in fact straightforward to show the projectabilityé—,é’f.
If we use Qv as the model ofp/N and letr : O — Qy denote the natural mapping,
then the projected vector fiel;d*(aifb) on Qy is described by an equation of the form

d
Ty (g) qv = [R(By(qv)) + ns(qv), 9 + qv + A] (2.34)
b
wheren,(gy (x)) € Ago is a uniquely determined differential polynomial 4ty (x). These
vector fields generate the commuting flows of the KdV-type hierarchpon= Q/N.
To deal with the Hamiltonian formalism, we need the following statement.

Property 3. Q in (2.28) is a Poisson submanifold 8fl in (2.16) with respect to the Poisson
bracket{, }z in (2.18).

To prove this, one has to show thayifx) is in A<¥N A0, then the Hamiltonian vector
field obtained from equation (2.20) by the replacemeng @f) by ¢(x) is in A< N Ao.
In the standard case, this is easily done by giving an explicit description of the projectors
Pq1, Pgr. In the case at hand, we observe the following properties of these projectors

P (A) C Aso Port(A) C Aso Pg(A-0) = {0} Ppr(Az0) C Az (2.35)

which are consequences of (2.23) and (2.24). These relations imply by (2.20) that the
Hamiltonian vector field aQ lies in A-o, while it is established in the same way as for
property 1 that it also lies ipd<.

It then immediately follows that the derivative of a local functiofabn Q with respect
to the vector fieldaa—lb on Q is given by

ad
a_t;,f ={/f. Hp}r (2.36)

whereH,, is obtained from (2.10). By the projectability % we know that the right-hand
side of (2.36) must be gauge invariantfifis gauge invariant. SincH, is a gauge invariant
local functional onQ, by the uniqueness property (2.8), we are naturally led to suspect that
the Poisson brackelf, g}r of any two gauge invariant local functionals @h is again
gauge invariant. Indeed, under an infinitesimal gauge transforméafién= [y, £] with

y(x) € Ago, one finds for any two local functionalg, g on Q that

) )
5,(f. glr = /dx<£, [yf,c]> —<£ [yg,£]> (2.37)
with
) ) ) )
V= [7/, Ré] -R [y, %} Vg = [y, Ri} -R [y, é} . (2.38)

Inspection shows thaty (x), y,(x) € A5° (compare (2.38) with the infinitesimal version of
equation (2.33)). Henc&, { f, g}z vanishes iff andg are gauge invariant, proving that the
Poisson bracket of gauge invariant local functionals is gauge invariant.

To summarize the outcome of the above, a Poisson bracket is defing/.ah by
identifying the local functionals orQ/A with the gauge invariant local functionals on
Q and determining the Poisson bracket on these functionals by (2.18). The KdV-type
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hierarchy onQ/N is generated by the commuting Hamiltoniakg with respect to this
induced Poisson bracket.

In the standard case, for which® c A, in addition to (2.23), one can show that our
induced Poisson bracket ap coincides with the ‘second’ Poisson bracket given in [5]. In
this case one also has an alternative interpretation of the ‘second’ Poisson brackét/on
based on the-matrix associated with the splittind = A-o + Ao (see for example [15]).
However, in the case of a splitting in (2.24) for whigh + {0} this second--matrix does
not even lead to consistent flows @h since in such a case the relatigh.; ¢ A<° does
not hold. Hence we do not have an alternative interpretation of the second Poisson bracket
in general.

Given the data A, A, di, do; «°, B°) with which we associated a KdV-type system, we
also have the modified KdV-type system corresponding to the (@&ta , di; «°, 8°). This
modified KdV system can be restricted to the subspace of its phase @pacf.3) given
by

E=0NQ0={L=0,+&x)+AlE(x) € A~ N AN Ao} (2.39)

Infact, Ec ® c Mand & c Q ¢ M are two chains of Poisson submanifolds with
respect tof, }r in (2.18). One can further check that

dim(A<* N A2 N A-g) = dim(A=F N A-g) — dim(A5°) (2.40)

which means that the number of the component§(®) coincides with the number of the
independent KdV fields. The map

w:8— Q/N (2.41)
induced by the natural projectio@ — Q/N is a generalization of the well known Miura
map. This maps converts the modified KdV-type flows ®rto the KdV-type flows on
Q/N. In the Hamiltonian setting is a Poisson map with respect to the (linear) Poisson
bracket{, }z on E and the (nonlinear) Poisson bracket @i\ obtained as a reduction of
the Poisson bracksdt, }z on Q.

Remark 2. One can naturally extend the action &f in (2.29) to the manifoldM in

(2.16). Although (like the action o) this action of V' on M does not leave the Poisson
bracket{, }% in (2.18) invariant, it is an ‘admissible’ action in the sense thatth@variant
functions close under the Poisson bracket. This property permits us to consider Hamiltonian
symmetry reduction of the hierarchy @vf, mentioned in remark 1, with respectA6. Then

Q/N c M/N can be interpreted as a Poisson submanifold and the KdV-type hierarchy as
a subsystem of the reduced hierarchy. oty \.

3. Application to nonstandard Gelfand—Dickey hierarchies

In fact, our original motivation for this work was to understand whether the nonstandard
Gelfand-Dickey hierarchy [9-11] defined by (1.2) can be interpreted in the Drinfeld—
Sokolov framework. We explain here that it can indeed be obtained as an example of
the general construction presented in the previous section. It turns out that one needs to
use a nontrivial splitting with3® # {0} in (2.24) to derive this system. For completeness,

we also give the interpretation of the other nonstandard Gelfand—Dickey hierarchy [9-11]
defined by

d o
yL = [(L"+1)>0, L] for L={0"+

ui8”’>8. (3.1)
i=1

i=
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In this case the input data satisfy the standard conditions, for whfctr A.
In the next section, we collect known results that will be used in the derivation of the
nonstandard Gelfand-Dickey systems presented in sections 3.2 and 3.3.

3.1. Generalized KP systems

We now recall some basic facts about the standard and nonstandard KP systems from which
the Gelfand-Dickey systems arise by reduction to Poisson submanifolds. For a detailed
exposition, see for example [8, 11] and references therein. Note that in this paper only
the quadratic Poisson brackets will be considered, even though these systems are known to
possess linear Poisson brackets as well.

We denote byD the associative algebra of scalar PDOs of the form

o0
L=>Y ud"" vn € Z. (3.2)
i=0

The transposition. — L' = > "72,(—3)"'u; is an anti-involution ofD. The projectors
P-o, P-o, Po, P-o and P<g on the corresponding associative subalgebre® afe given by

n o0
Poo(L) =) wid"™"  Poo(L) =) upyd™

i—0 i1 (3.3
Po(L) = u, P.o=Pso— Py Pgo = P_o+ Po.

The Adler trace [16] orD is given by T(L) = [ dx reqL) with reSL) = u,1. We shall
use the linear functionals o defined byly(L) = Tr(LX), where X is some constant
PDO. For a fixed positive integer, we shall often consider the affine subspdeof D,

o0
D, = {L:B”—i—Zuian_i}. (3.4)
i=1

3.1.1. The standard KP hierarchy.The KP hierarchy is defined with the aid of the
splitting of D into purely differential and PDOs, which yields the antisymmetrimatrix

R = %(P>0 — P_p). In association withR, there exists a one-parameter family lo€al
quadratic Poisson brackets @&n

{Ix, ly}p(L) = Tr(LXR(LY) — XLR(YL)) + v / dx (D tres|L, X])res[L, Y] (3.5)

whered, (D1 f) = f. Note that the constant ambiguity in the definition(&f~* f) drops
out from formula (3.5), which defines a local Poisson bracket sincd.req[ is a total
derivative. The ‘second’ Adler—Gelfand—Dickey bracket [8] corresponds t& 0. The
possibility to add the term proportional toon the right-hand side of (3.5) was apparently
first noticed in [17]. For any: > 0, D, C D is a Poisson submanifold with respect to the
family of brackets in (3.5). For any complex numherthe local (differential polynomial)
map F, given onD, by

F.(L)=¢e%Le? & =D"tuy (3.6)
which is invertible except for = % is a Poisson map according to

{Ix o Fe,ly o FeYgp = {lx, Iy }ép o Fe Ve =V +c(2—nc)d — nv). (3.7)
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Note thaty = % is a fixed point for this transformation. The operatérs D, satisfying
the conditionL = P-q(L) form a Poisson submanifold with respect {to}; for any v,
whereas those of the form

L=09"+) ud"" (3.8)
i=2

form a Poisson submanifold for the value= ,—11 only.
On D,, the commuting KP flows

a m m

3 L= [R(L"), L] =[(L")>0, L] m=1,2,... (3.9)

are generated by the Hamiltoniahk, (L) = %Tr(L%) with respect to any of the brackets

in (3.5). Restriction of the KP flows (3.9) to (3.8) gives the standahdKdV hierarchy.
Let us now write the operatdt = P-o(L) € D, in the factorized form

L=9"+) uwd" = @+86)0+&-1...(0+8) (3.10)
i=1

which yields the Miura transformation, each field being expressed as a differential
polynomial in theg;. Then the generalization in [18] of the Kupershmidt—Wilson theorem
[19] asserts that the quadratic brack¢tg}ip(L) is equal to the bracket

n 8f ag
dx (_) 61 —v) <_) (3.11)
/ 1221 sg ), 5/

when theu; andg¢; are related through the Miura transformation. Note that this bracket is
invariant under any permutation of tifeand under a global change of sign of them.

3.1.2. The nonstandard KP hierarchyThe relevance of ‘nonstandard’ splittings Bf to
soliton equations was apparently first noticed in [20], see also [9, 21]. The definition of
the nonstandard KP hierarchy of interest here is based on the splittiiy info purely
differential operators and PDOs containing the constant term. This splitting gives rise to
the nonantisymmetrie-matrix

R=}(P.o— P<). (3.12)

In correspondence with thismatrix, two quadratitocal Poisson brackets have been defined
onD in [10, 11]:

{Ix, Iy}a(L) = TLXR(LY) — XLR(YL)) + Tr([L, Y]oX L

+[L, Y(LX)o + (D tres[L, YD[X, L]) (3.13)
{Ix.Iy}8(L) = T(LXR(LY) — XLR(YL)) + Tr((L, Y]oLX
+[L,Y](XL)o — (D *res[L, YD[X, L]). (3.14)

For any fixedn > 0, D, C D is a Poisson subspace with respect to both of the above
Poisson brackets. The two brackets admit different Poisson subspaces with a finite number
of fields. In the case of bracket (3.13), the operatotsof the form
n—1
LA=0"""4 ) ud" " 07, (3.15)
i=1

t Originally, only the hierarchy with the value = 1 was called the KP hierarchy.
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form a Poisson submanifold for amy> 1. In the case of (3.14), the operators

LB = (a” + Zu,ﬂ”’)& (3.16)
i=1

form a Poisson submanifold for amy> 1.
On the spacé®,,, the nonstandard KP hierarchis given by the commuting flows

%L =[R(L"),L] =[(L")-0, L] m=12,.... (3.17)

These flows are generated by the Hamiltonighs= - Tr(L") with respect to any of the
brackets (3.13), (3.14). In contrast to the standard case, the coeffigiefithe subleading
term of L is now dynamical, butHy := fdx uq is still constant with respect to the flows.
Restriction of these flows to the sets of operatdrd} in (3.15) and{L?} in (3.16) yields
the nonstandard Gelfand-Dickey hierarchies in (1.2) and (3.1), respectively. In the case (A)
one obtains nontrivial flows for > 2 only.

There exists a Poisson equivalence between the bra{ck]%sB and{, }p with v = £1:

{Ix o pa.ly o paldh = {lx. Iy}4 o pa (3.18)
{Ix o ps.ly o pglan = {lx, Iy}5 o ps (3.19)

where p,, pp are two invertible maps o defined byp,(L) = 3~1L and pg(L) = L3J.

This result, given in [24, 18] (see also [25]), allows us to derive the properties of the
brackets{, }o” from familiar properties of the brackét },. In particular, it allows for a
straightforward derivation [18, 26] of generalized Kupershmidt—Wilson theorems for these
brackets. For this purpose, one writes the operalotse pa(P=o(D,)) in (3.15) and

L8 € pp(P=o(Dy)) in (3.16) in a multiplicative form as

LY =320 +&6)0+&-1)...(0 +&) (3.20)
LE=@+&E)@+E_1)...(0 +£)d. (3.21)

Then the Kupershmidt-Wilson theorem far}} with v = 1 and the relations (3.19) and
(3.19) imply that if theu; are expressed through tgeby the Miura transformations (3.21)
and (3.21), then the brackets}5® on {L4-#} are equal to

nLSf Sg
dx (-) 8y —vhB) (-) (3.22)
/‘ E; 88 ), 58,

with v4 = —v8 = 1, respectively. These Miura transformations will be quite useful for us.

Although they intertwine the Poisson brackets, neithgror pg converts the standard
Gelfand-Dickey hierarchy into the nonstandard one since the commuting Hamiltonians are
not intertwined by these maps.

Remark 3. It is well known [12] that the quadratic Adler-Gelfand-Dickey bracket is a
version of the Sklyanin bracket and its Jacobi identity depends on the antisymmetry of the
r-matrix R = %(P>0 — P_g). General results on quadratic Poisson brackets on Lie groups
associated with nonantisymmetriematrices have been obtained in [27], and equivalent
results are found in [28] in the context of associative algebras, see also [29, 30] which deal
with special cases. The brackgts};, as well as the brackets }S’B are identified in [25]

as special cases of th&:; b, ¢, d)-scheme’ of [27], with nonlocal operatoss b, ¢, d. For

1 The alternative term ‘modified’ KP hierarchy is often used in the literature, especially in thel case, see
for example [22, 23].
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the bracketyg, }S*B an equivalent identification in terms of the notation of [28] is contained
in [11].

3.2. Nonstandard Gelfand-Dickey system of type A

Now we show that the nonstandard Gelfand-Dickey system in (1.2) can be recovered within
the generalized Drinfeld—Sokolov formalism developed in section 2 with an appropriate
choice of the sextupletA, A, di, do, ; «°, %. Our demonstration below shall be purely
deductive; the right choice of data was originally found by a long explicit inspection of the
linear problem forL in (1.2), which involved some guesswork too.

We consider the algebrd = si(n) ® C[1, A71]. We denote bye; ; the n x n matrix
with 1 at the intersection of liné and column; and O everywhere else, and introduce the
two compatible gradations ofl

1 1-2k
dy = (n—1)r0, + adICA Ka= Z HT e k (323)
k=1

do = 13;. (3.24)

Note thatdy is the homogeneous gradation as in the derivation of the standard system (1.1)
[1], but d; is not the principal gradation. In our notation, the principal gradation would
readnio; + ad/C,. We shall refer to this choice later as the standard case. The gradations
do andd; in (3.23), (3.24) satisfy the conditions in (2.23), but do not satisfy the condition
A° c Ap. Then forn > 3 we choosg

A=) erpr1+Alen—11+€n2) (3.25)
k
which hasd;-grade one. This differs from the standard choice [1] by the entries which
contain the loop parameter One can check that is a regular semisimple element, that
is to sayA = Ker(adA) & Im (adA), and KeradA) C A is an Abelian subalgebra. The
vector space KegadA) is generated by the homogeneous eleméniss A™ given by

2(n — DHr In>
n

=

Il
AN

Atn-pyer = (20! (A’ . withl<r<n—1 IleZ (3.26)

The splitting of A° of the form in (2.24) is in this case defined by
B° := (Ker(adA))° = sparfAo}. (3.27)

3.2.1. The modified KdV-type systentirst we shall identify the modified KdV-type system
associated with the above sextuplet as the modified nonstandard Gelfand—Dickey system of
type A based on the factorized Lax operator in (3.21). An element of the modified KdV
phase spac& in (2.39) can now be parametrized by

n l n
E0) =) (B — ek +AE+E)en  0=>) & (3.28)
k=1 k=1

The explicit evaluation of the Poisson bracket (2.18) ®ryields exactly the bracket in
(3.22) that corresponds to the Miura map for the bracketd. The identification of
the conserved quantities can be performed through the linear problem and the elimination

1 Then = 2 case is special and shall be treated separately.
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procedure following the lines of [7]. ¥ = (Y1, ¥2, ..., ¥,)" then one obtains from the
linear problemZWw = 0 the eigenvalue equation
@—0) 0 +& —0)@+E1—0)...(0+& —0)Y1=2(—D" Ay (3.29)

which is equivalent to
Lyp =010+ £)0+E-1) ... (0 + )Y = 2(—1)" Ay
with ¥y 1= e @y, (3.30)

According to section 2.1, the commuting Hamiltonians of the modified KdV-type system
can be chosen &4 = [ dx hi(x) where 897(L) = 3, + A + Y o0 o hu(X)A_,, is defined

by (2.6). Theny; may then be computed in two different ways, frat® = 0 and from
(3.30), along the lines of [7]. By comparison of the two results, one obtains

Hoznilfdx(gsk)

Hy = =) Tr(L™)  form =1
m

(3.31)

with a,, = n if m is zero modulo(n — 1), anda,, = 1 in the other cases. Except for
normalization, the Hamiltonian®{,, for m > 1 are thus identical to thél/,, that generate
the flows in (1.2) and, gives the conserved chargg® mentioned after (3.17). This proves
the equivalence of the two modified systems.

3.2.2. The KdV-type systemWe shall now identify the generalized KdV system that results
from the construction of section 2.2 using the above sextuplet as the nonstandard Gelfand—
Dickey system in (1.2). The nondegeneracy condition (2.22) holds in our case/siisce

a regular element. The variabjgx) defined by (2.28) has almost the same form as in the
standard case (lower triangular matrix including the diagonal), up to the addition of one
field,

qx)= Y qij(®ej +rj(x)en. (3.32)
n=i>j>1
The gauge algebral<® N A, is exactly the same as in the standard casadependent
strictly lower triangular matrices). Thus we may use our knowledge of the standard
Drinfeld—Sokolov gauges, and parametrize the phase sp#aé of the KdV system by the
Drinfeld—Sokolov gauge slic@y in (2.31) whose general element is written as

n—1
gy (x) = 2w1e,1+ Y (=" i1 ken k. (3.33)
k=1

Such a gauge is usually referred to as a horizontal gauge. From the linear puilem0
for £L € Q (2.28), we obtain a gauge invariant eigenvalue equationygnwhich in the
Drinfeld—Sokolov gauge becomes

n

@ — v1)1<8” +y vka”">wl =2(-1" "y (3.34)

k=2
or equivalently

n—1
Ly = (3"1 +) w4 alunﬁl =2(-1)"""an U1 = e P Wy (3.35)
k=1
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The u; have differential polynomial expressions in terms of the These relations are
invertible and they, are also differential polynomials of thg. Hence the points of)y may

be parametrized by the functiong. The correspondence between the two parametrizations
of L in (3.30) and (3.35) provides a model for the Miura map & — Q/N = Qv

in (2.41), which is a Poisson map whéhis equipped with the linear bracket (2.18) and
Q/N = Qy is equipped with the nonlinear bracket obtained as the reduction of the linear
bracket onQ. Since this map is given by just the factorizationlgfusing the identification
between the linear bracket d& with the bracket in (3.22) that appears in the generalized
Kupershmidt-Wilson theorem for the bracKet}d (3.13), we conclude that the nonlinear
bracket onQ/N = Qy coincides with the bracket, }5 on the set of the Lax operators

L = L% in (3.15). The identification between the respective sets of commuting Hamiltonians
has already been established in (3.31).

3.2.3. The case = 2. This case is slightly different from the generic one because of the
form of A, now we choosé\ = e; -+, 1. The element is semisimple and regular with
Ker(adA) = sparfA*Alk € Z}. Apart from this, the sextupletA, A, d1, do; «°, 8°) does
not differ from the generic case. We briefly describe the identification of the associated
KdV-type system with the nonstandard Gelfand-Dickey system in (1.2nfer 2. A
convenient Drinfeld—Sokolov gauge is defined by

qv(x) = (—Aug — ;11(4142 + 2uy, —ud))ess. (3.36)
From the linear problenf¥ = 0, we obtain the eigenvalue equation ¢n

2
(32 fupt -t m) Y1 =A%y (3.37)
or equivalently

Lyn=@+ur+9 uyn =221 Y1 =exp(—ix — 3D un)yn. (3.38)
Thanks to the low number of fields, the Poisson brackets ofithenay easily be computed

by reduction of (2.18), and coincide with those obtained from the bracket in (3.13). The
identification of the commuting Hamiltonians is obtained as in the other cases.

Remark 4. Another example for which the technique developed in section 2 applies
is the following. The algebrad in the sextuplet(A, A, di, do, ; o, g% is now A =

sl(n + 1) ® C[x, A71], but we keep the same matrix of equation (3.25), and the same
gradations (3.23), (3.24) as before. Cleay,is still a semisimple element. A basis for
(Ker (adA))? is now given by the two elements, in (3.26) and2 = en+1,,,+1—% Y i1 hks

and we take

B° := spar{Ao}. (3.39)
A Drinfeld—Sokolov gauge may be parametrized by

5 n—1 B .
qV(x) =2 (Ul - ;) €1 + Z(_l)n kvn-‘rl—ken,k + U Q2 + (_l) Den n+1 + X€n+1,1-
k=1

(3.40)

Then the standard elimination procedure leads from the linear prolddém= 0 to the
eigenvalue equation o,

D n n S n—k
(@ — Ul)_1< (3 - ;) + Z Vg (3 — ;) + ¢ — 19)_1)()1//1 =2(=1)" 1y,
k=2
(3.41)
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or equivalently, withyj, = e~ vy,

n—1
Ly = (a”—l + Y wed" 0, + 00 + w)—lx)1z1 =2(-1)""y1.  (3.42)
k=1

The fieldsu;, andw have invertible differential polynomial expressions in terms of ihe
and¢. It is not hard to check that the nonstandard KP equations (3.17) define consistent
flows for the operator. in (3.42). Moreover, the fieldv does not evolve under these
flows, and may be set to zero. Then, if one introduces a fieldhich is a primitive ofgp,

® = (D 1p), the Lax operatol. may be brought to the form

n—1

L=""4 wd" " 4+ 07w, — ©x) + P9y (3.43)

k=1

which is one of the Poisson subspaces of the bracket (3.13) given in [11]. The restricted
Poisson bracket is nonlocal in this parametrization [11]. One should note that the set of
Lax operatord. in (3.42) also defines a Poisson subspace of the bracket (3.13), which may
be extended to #cal bracket on the set of fieldg«, w, ¢, x}. Finally, it is clear that
using the natural embedding of(n) into sl(n +m) for anym > 1 while keeping the same
elementA, one would reach a Lax operator containimgcomponent vector versions ¢f
and x. More generally, constrained nonstandard matrix KP systems having Lax operators
similar in form to L in (3.42) can also be derived by a slight modification of this example.

Remark 5.Restricting to the case = 2/ + 1, we note that the element in (3.25) may be
conjugated to

2/

I
A= Z eiit1— Z € it1 — Aey 1+ heyia (3.44)
o1 STl

which is thus semisimple and hds-grade one. We then consider the involutiprof the
algebraA defined on some element by

241
X $(X)=—-nX"ny n= Z €242 (3.45)
im1

The elements ind invariant under this involution form the loop algebrasef(2/ + 1) and

A is an invariant element. The gradatidn in (3.24) and the homogeneous gradatifyn

both commute with the involutio. Moreover, ther-matrix R in (2.13) with «® as in

(2.24) andp® as in (3.27) also commutes with Therefore, using an invariant element

b € C(A), one may restrict the flow (2.32) to those elemeptahich are invariant under

¢. The mapPy is identically zero on the invariant subalgebra. As a consequence, the
restricted nonstandard hierarchy is just the standard Drinfeld—Sokolov hierarchy [1] based
on the algebrao(2/ + 1) ® C[A, A~1], whose Lax operator satisfi@s*L'd = L. If n = 21,

then a reduction of (1.2) to Lax operators satisfyfigfL’d = —L is possible [9], but in

this case we do not have an interpretation in the Drinfeld—Sokolov approach at present.
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3.3. Nonstandard Gelfand-Dickey system of type B

The nonstandard Gelfand—Dickey hierarchy of the type in (3.1) can be recovered within
the usual Drinfeld—Sokolov formalism [4, 5] with an appropriate choice of the quadruplet
(A, A, dy, do).

We considerd = si(n) ® C[x, »~!] endowed with the two compatible gradations

" n+1-—2k

dy = nxd;, + adkp Ks = k; — ek (3.46)
—n 1 n—1

do = 2).9; + adk K= nnt =) ek (3.47)
n n =1

Hered; is the principal gradation, buk is not the homogeneous gradation. The assumptions
in (2.23) as well as the conditiod® c Ay are satisfied. We choose far the standard
regular semisimple element di-grade one:
n—1
A= Z erk+1+ Aey 1. (348)
k=1
The Abelian algebra KgadA) is generated by the matrices” for m not a multiple ofa.

3.3.1. The modified KdV-type systenWe wish to identify the modified KdV-type system
defined by the above quadruplet with the system belonging to the factorized Lax operator,
of ordern, of the formL = L? in (3.16). For this we now parametrize the phase sfice

in (2.39) by

n—1 1 n—1
E) =) G—0ex—0en,  o=-) & (3.49)
k=1 =

The explicit evaluation of the Poisson bracket (2.18)yields exactly the bracket given in
(3.22). The linear problem¥ = 0, whereW = (Y1, ¥, ..., ¥,)’, leads to the eigenvalue
equation

Ly = 0 +&- D0 +E-2) ... (0 +E)0P, = (=)"A, (3.50)

with v, = e ®7)y,.. The result of the dressing procedure in (2.6) applied to & may
be parametrized a$¥ (£) = 9, + A 4+ Y_o_,,.pn hm(x)A™™. Then one finds

Hyy = /dth(x) = —n—l1(—1)" Tr(L™) (3.51)

whereby the identification of the respective modified systems is complete.

3.3.2. The KdV-type systemln order to identify the KdV-type system associated with
the above quadruplet as the corresponding nonstandard Gelfand-Dickey system, we now
parametrize the elements of a convenient Drinfeld—Sokolov géugén (2.31) as

n—1 n—1
v
qv(x) = E ! 76k ~ Vi€nn — E =D e 1,4 (3.52)
= - =2

From the linear problen£ ¥ = 0, we obtain the eigenvalue equation o

n=1n-1 n—1-k
o 1 — (_1\"
((a+n—1> +;”k (3+n_1> )(8+v1)wn—( D", (3.53)
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or equivalently

n—1
L, = (an_l + Zuka”‘l_k>3% = D =Py, (3.54)
k=1

Using the same argument as in section 3.2.2, we conclude that the nonlinear bracket on
Q/N = Qy, parametrized by the functiong, is the same as the bracket obtained from
(3.14). This establishes the desired identification.

4. Discussion

The Gelfand-Dickey system (1.1) and its variants in (1.2) and (3.1) are reductions of the
KP hierarchy and its nonstandard counterpart. They represent three distinct generalized
KdV hierarchies whose flows are Hamiltonian with respect to the same nonlinear Poisson
bracket structure given by th&), ®U (1) classical extended conformal algebra. Drinfeld and
Sokolov [1] showed how to view the Gelfand-Dickey hierarchy in an affine Lie algebraic
setting. Their derivation used the grade-one element of the principal Heisenberg subalgebra
of the loop algebrail(n) ® C[A, A~1] in a Hamiltonian reduction procedure in which the
interplay between the homogeneous and the principal gradations played an important role.
In this paper, we found that the nonstandard Gelfand—Dickey hierarchy of type B (3.1)
admits a similar derivation in which the homogeneous gradation is replaced by another
gradation. In this way, the system in (3.1) is interpreted as a special case of the systems
obtained by the generalized Drinfeld—Sokolov reduction procedure defined in [4], which
associates a KdV-type system with a quadruplét A, d1, do), where the gradations;

of the loop algebrad satisfy that every element with positivi-grade is positive in the
di-gradation too.

More interestingly, we found that the Gelfand—Dickey system of type A (1.2) cannot
be obtained in the framework of [4]. In fact, we gave a matrix Lax formulation for the
hierarchy (1.2) by using two gradatioas and d; which satisfy weaker conditions than
those above. In particular, there may exist elements of the loop algehrigh positivedy
grade and zerd; grade, provided they are not orthogonal to the kernel of the adjoint action
of A € A. The general Lie algebraic setting which we used could be applied to other cases
as well. A series of such applications was mentioned in remark 4.

The kernel of the regular semisimple elememtin (3.25) is a maximal Abelian
subalgebra of the loop algeby&= si(n) ® C[x, A~1], which would become a Heisenberg
algebra after introducing the central charge. The inequivalent Heisenberg subalgebras are
classified by the conjugacy classes of the Weyl groupl¢t) [31], which are in one-
to-one correspondence with the partitionsmof The Heisenberg subalgebra to whigh
belongs corresponds in the Kac—Peterson classification to the conjugacy class in the Weyl
group associated with the partitign — 1, 1). Indeed, after a suitable rescaling of the loop
parameterA may be shown to be equivalent to

N

n—

A= eii+1+ 5»8;171,1 4.1)

i

I
AN

which is a generator of the principal Heisenberg algebra of the subalgélara- 1) ®

C[X, »71]. As well as the constrained version (1.2) of the nonstandard KP hierarchy derived
in section 3.2, there exists a constrained version of the standard KP hierarchy associated
with the same Heisenberg subalgebrafofThis constrained KP hierarchy [32] has a scalar
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Lax operator of the form
L=0" 400"+ - +ii, 1+ 9@+ w)F with @ = —iiy (4.2)

whose derivation in the Drinfeld—Sokolov framework is described in [7]. The derivation
uses the elemenk € A and the homegeneous gradation together with a gradaiidar

which the conditiond® c Ay is satisfied. More precisely, in [7] thg (n) case is considered

for which w in (4.2) is independent af1; neitheriz; nor w has nontrivial dynamics. By
settingw = 0 and conjugating by, which is a singular map at the zeros@fone may
convert the flows and the Poisson brackets of the system basédro(¥.2) into those of

the system in (1.2) (see [10]). Note also that the mpap L — 9L connects the second
Poisson bracket (but not the flows) of the system in (4.2) to that of the system mentioned
in remark 4. It should be possible to interpret these connections between the standard and
nonstandard constrained KP hierarchies as consequences of their closely related affine Lie
algebraic origin.

Finally, we wish to stress that in our opinion the most interesting problem arising from
this paper is to find new input data whereby the general construction of section 2 might
give rise to new integrable hierarchies. As another problem which remains to be settled,
let us also remark that although the nonstandard Gelfand—Dickey hierarchies of type A are
known from the scalar Lax formalism to be bi-Hamiltonian [10], we have not yet been able
to identify the first Poisson bracket in the matrix Lax formalism.
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