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Abstract. Subject to some conditions, the input data for the Drinfeld–Sokolov construction of
KdV-type hierarchies is a quadruplet(A,3, d1, d0), where thedi areZ-gradations of a loop
algebraA and3 ∈ A is a semisimple element of the nonzerod1-grade. A new sufficient
condition on the quadruplet under which the construction works is proposed and examples are
presented. The proposal relies on splitting thed1-grade zero part ofA into a vector space direct
sum of two subalgebras. This permits one to interpret certain Gelfand–Dickey-type systems
associated with a nonstandard splitting of the algebra of pseudodifferential operators in the
Drinfeld–Sokolov framework.

1. Introduction

Developing the ideas of the pioneering papers [1, 2], a general Lie algebraic framework has
recently been established in which to construct generalized KdV- and modified KdV-type
integrable hierarchies [3–5]. This formalism contains many interesting systems as special
cases [6, 7]. However, there exist some well known sytems which do not seem to fit the
approach which has been developed so far. For example, while the standard Gelfand–Dickey
hierarchies [8]

∂

∂tm
L = [(L

m
n )>0, L] for L = ∂n +

n∑
i=1

ui∂
n−i (1.1)

have a well known interpretation [1], which motivated the whole theory, their ‘nonstandard’
counterparts [9–11] defined by

∂

∂tm
L = [(L

m
n−1 )>1, L] for L = ∂n−1+

n−1∑
i=1

ui∂
n−1−i + ∂−1un (1.2)

have, to date, resisted a similar interpretation.
In this paper we propose an extension of the above mentioned Lie algebraic framework

of constructing integrable hierarchies. This shall prove general enough to contain the
nonstandard Gelfand–Dickey hierarchies as special cases.

The Drinfeld–Sokolov construction relies on the use of a classicalr-matrix [12] given
by the difference of two projectors,R = 1

2(Pα−Pβ), associated with a splittingA = α+β
of an affine Lie algebraA. To date, it has been assumed [1–5] that the subalgebrasα, β ⊂ A
§ Permanent address: Department of Theoretical Physics, József Attila University, H-6720 Szeged, Hungary.
‖ ENSLAPP, URA 14-36 du CNRS, associé à l’ENS de Lyon et au LAPP.
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have the formα = A>0 andβ = A<0 in terms of aZ-gradationA = ⊕n∈ZAn of A. The
essence of the proposal of this paper shall be to use a more generalr-matrix obtained by
further splittingA0. That is we shall use

R = 1
2(Pα − Pβ) whereα = A>0+ α0, β = A<0+ β0 (1.3)

in correspondence with a splittingA0 = α0+β0 subject to certain conditions. The standard
construction will be recovered forβ0 = {0}.

The standard and nonstandard Gelfand–Dickey systems correspond to two splittings of
the algebra of pseudodifferential operators (PDOs) that differ in the scalars being added to
the subalgebras of purely differential or purely integral operators, which is reminiscent of the
manipulation with the splittings in our construction. Since the nonstandard Gelfand–Dickey
systems are recovered from it, we sometimes refer to our construction as the ‘nonstandard
Drinfeld–Sokolov construction’. However, it should be stressed that our construction is
essentially just the standard one implemented under weakened conditions on the input data.

This paper is organized as follows. Section 2 is devoted to explaining the nonstandard
Drinfeld–Sokolov construction. In section 2.1 modified KdV-type systems are dealt with.
The construction of KdV-type systems is described in section 2.2. The nonstandard Gelfand–
Dickey systems are derived as examples in section 3. Section 4 contains our conclusions.
Throughout the paper, proofs are often omitted or kept short since they are similar to those
in the standard case.

2. A general construction of integrable hierarchies

The standard construction [1–5] associates a modified KdV-type system with a triplet
(A,3, d1) and a KdV-type system with a quadruplet(A,3, d1, d0), where thedi (i = 0, 1)
are Z-gradations of an affine Lie algebraA, 3 ∈ A is a semisimple element ofd1-
grade k > 0, and some further conditions hold in the KdV case. Below we present
a generalization of the standard construction based on a splitting of thed1-grade zero
subalgebraA0 into a direct sum of two subalgebras of a certain form, and weakened
conditions on the gradationsdi .

2.1. Modified KdV-type systems

Let A be an affine Lie algebra with vanishing centre, that is a twisted loop algebra

A = `(G, τ ) ⊂ G ⊗ C[λ, λ−1] (2.1)

attached to a finite-dimensional complex simple Lie algebraG with an automorphismτ of
finite order [13]. LetA = ⊕n∈ZAn denote aZ-gradation ofA given by the eigensubspaces
of a derivationd1 of A asd1(X) = nX for X ∈ An. Consider a semisimple element3 ∈ Ak
for somek > 0, and two subalgebrasα0, β0 of A0 in such a way that

β0 ⊂ Ker(ad3) and A0 = α0+ β0 (2.2)

is a linear direct sum decomposition. The subsequent construction, which reduces to that
in [1–5] for β0 = {0}, defines a modified-KdV-type system for any choice of the data
(A,3, d1;α0, β0). By definition, the phase space of this system is the manifold2 of
first-order differential operators given by

2 := {L = ∂x + θ(x)+3|θ(x) ∈ A<k ∩A>0}. (2.3)
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We use the notationA<k = ⊕n<kAn etc. SinceA<k ∩ A>0 is a finite-dimensional space,
the fieldθ(x) encompasses a finite number of complex-valued fields depending on the one-
dimensional space variablex. We wish to exhibit a family of compatible evolution equations
on2 labelled by the graded basis elements of

C(3) := (Cent Ker(ad3))>0 (2.4)

which is the positively graded part of the centre of the Lie algebra Ker(ad3). For this
we shall use the well known ‘formal dressing procedure’ based on the linear direct sum
decomposition

A = Ker(ad3)+ Im (ad3) Ker(ad3) ∩ Im (ad3) = {0} (2.5)

whose existence is guaranteed by the semisimplicity of3. Next we recall the main points
of this procedure in a slightly more general context than required in this section.

Lemma 1.Let j (x) ∈ A<k be an arbitrary formal series with smooth component functions.
Consider the equation

L := (∂x + j (x)+3) 7→ eadF (L) = ∂x + h(x)+3 (2.6)

whereF(x) andh(x) are required to be the formal series

F(x) ∈ A<0 h(x) ∈ (Ker(ad3))<k. (2.7)

Then (2.6) can be solved forF(x) and in terms of a particular solutionF0(x) the general
solution is determined by

eadF = eadKeadF0 (2.8)

where K(x) ∈ (Ker(ad3))<0 is arbitrary. There is a unique solutionF(j (x)) ∈
(Im (ad3))<0, whose components are differential polynomials in the components ofj (x).

The supplementary dataα0, β0 do not play any role in this lemma, and the proof may be
found in [1] (see also [3, 4]). Then, for any constantb ∈ C(3) and any functionj (x) ∈ A<k
one can define

Bb(j) := e− adF(j)(b). (2.9)

The components ofBb(j) are uniquely determined differential polynomials in the
components ofj and one has [Bb(j), (∂x+j +3)] = 0 as a result of [b, (∂x+h+3)] = 0.
For a later purpose, note also that the formula

Hb(j) :=
∫

dx hb(j (x)) with hb(j (x)) := 〈b, h(j (x))〉 (2.10)

yields a well-defined functional ofj (x) ∈ A<k if we assume that the integral of a total
derivative is zero. Here〈 , 〉 is a nondegenerate, invariant, symmetric bilinear form onA.
(Such a bilinear form exists and is unique up to a constant; the densityhb(j (x)) is well
defined only up to a total derivative in general.) According to a standard calculation [1],
the functional derivative ofHb(j) defined using this bilinear form can be taken to be

δHb
δj
= Bb(j) for j (x) ∈ A<k, b ∈ C(3). (2.11)

Since the conditions of lemma 1 hold on2 in (2.3), we can apply the dressing procedure
to construct an integrable hierarchy on this manifold. For this we now introduce the splitting,

A = α + β with α = A>0+ α0, β = A<0+ β0 (2.12)
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using (2.2), and the corresponding classicalr-matrix ofA,

R = 1
2(Pα − Pβ) (2.13)

wherePα, Pβ projectA onto the respective subalgebrasα, β. By definition, the evolution
equation associated withb ∈ C(3) is given by the following vector field∂

∂tb
on2:

∂

∂tb
θ := [R(Bb(θ)),L] = [Pα(Bb(θ)),L] = −[Pβ(Bb(θ)),L]

at L = (∂x + θ +3) ∈ 2. (2.14)

The second and third equalities hold since [Bb(θ),L] = 0. As in the standard case, the
second equality shows that∂

∂tb
θ belongs toA>0. The third equality then has to be used in

order to show that∂
∂tb
θ also belongs toA<k. The only point here is that there is a term

in Pβ(Bb(θ)) with d1-grade zero, which, when commuted with3, could give a term with
d1 gradek. However, from our hypothesis in equation (2.2), this commutator vanishes.
In summary, from these equalities it follows that∂

∂tb
θ is a differential polynomial in the

components ofθ(x) with values inA<k ∩A>0, which guarantees that (2.14) makes sense as
a vector field on2. Using [Ba(θ), Bb(θ)] = 0 for all a, b ∈ C(3) and that as a consequence
of (2.14) ∂

∂ta
Bb(θ) = [R(Ba(θ)), Bb(θ)], together with the modified classical Yang–Baxter

equation [12] forR, it can be shown that the vector fields associated with different elements
of C(3) commute:[

∂

∂ta
,
∂

∂tb

]
= 0 ∀a, b ∈ C(3). (2.15)

The functionshb(θ) are of course the densities of corresponding conserved currents.
Having presented the algebraic construction of the hierarchy of evolution equations on

2, we now describe the Hamiltonian formulation of these equations. For this it will be
convenient to introduce a Poisson bracket on the local functionals on the space

M := {L = ∂x + j (x)+3|j (x) ∈ A<k} (2.16)

which contains2. A local functional f : M → C is given by f (j) =∫
dx p(x, j (x), . . . , j (n)(x)), wherep is a differential polynomial in the components of

j whose coefficients are smooth functions ofx. We let δf

δj (x)
∈ A denote the functional

derivative off , and introduce ther-bracket

[X, Y ]R = [RX, Y ] + [X,RY ] X, Y ∈ A. (2.17)

Imposing, for example, a periodic boundary condition onj (x), the following formula defines
a Poisson bracket on the local functionals:

{f, g}R(j) :=
∫

dx

〈
j +3,

[
δf

δj
,
δg

δj

]
R

〉
−
〈
Rδf
δj
, ∂x

δg

δj

〉
−
〈
δf

δj
, ∂xR

δg

δj

〉
. (2.18)

The Hamiltonian vector field,δf , corresponding tof is given by

δf j =
[
Rδf
δj
,L
]
+Rt

[
δf

δj
,L
]

at L = (∂x + j +3) ∈M. (2.19)

Using the projectors associated with the decompositionA = α⊥+β⊥, whereα⊥, β⊥ denote
the annihilators ofα, β in A, we haveRt = 1

2(Pβ⊥−Pα⊥). More explicitly, the Hamiltonian
vector field reads as

δf j = Pα⊥
[
j +3,Pβ δf

δj

]
− Pβ⊥

[
j +3,Pα δf

δj

]
+ Pα⊥Pβ∂x δf

δj
− Pβ⊥Pα∂x δf

δj
. (2.20)
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We now have two important statements to make.

Property 1. 2 ⊂M is a Poisson submanifold, and therefore one can trivially restrict the
Poisson bracket to2.

Property 2. The flow in (2.14) is Hamiltonian with respect to the Poisson bracket{ , }R on
2 and the HamiltonianHb(θ) is obtained by restricting (2.10) to2.

The first statement requires one to check that ifj (x) ∈ A<k ∩A>0 thenδf j (x) lies in
the same space, which is readily done with the aid of (2.20). As an example, let us examine
the first term on the right-hand side of (2.20). Because of the projectorPα⊥ , this term has
positive or zerod1-grade. Owing to our choice of data (2.2), the commutator has ad1-grade
smaller thank, and this remains true when it is projected. Each term may be studied in a
similar way. The second statement follows by combining (2.11) with (2.19).

Remark 1.One can naturally extend the definition of the commuting vector fields∂
∂tb

to the
whole manifoldM in (2.16) on which lemma 1 applies. The flows of the resulting hierarchy
onM can be written in a Hamiltonian form using{ , }R in (2.18) and the HamiltonianHb(j)
in (2.10). This system onM is conceptually useful to consider since both the modified
KdV-type and (as we shall see) the KdV-type systems are reductions of it. In general, it is
an interesting problem to find all consistent subsystems of the hierarchy onM that involve
finitely many independent fields.

2.2. KdV-type systems

We describe below a construction that yields systems that we call ‘systems of KdV type’.
The construction requires that data of the form(A,3, d1, d0;α0, β0) be given, whereA,
3, d1 satisfy the previous conditions andd0 is anotherZ-gradation ofA. There are further
conditions on the data that we specify next.

We initially assume that the twoZ-gradations ofA are compatible, which means that
[d0, d1] = 0 and we have a bigradation ofA:

A = ⊕m,n∈ZAnm Anm := {X ∈ A|d1(X) = nX, d0(X) = mX} (2.21)

where superscripts/subscripts denoted1/d0-grades. We need the nondegeneracy condition

Ker(ad3) ∩A<0
0 = {0} (2.22)

which is a nontrivial condition ifA<0
0 6= {0}. We finally suppose that

A>0 ⊂ A>0 A<0 ⊂ A60 (2.23)

and require a splitting ofA0 into a vector space direct sum of subalgebras of the form

A0 = α0+ β0 α0 = A0
>0 β0 ⊂ Ker(ad3). (2.24)

The conditions on the two gradations used in [4] (see also [3]) are stronger than (2.23)
in that they include the additional conditionA0 ⊂ A0. This extra condition guarantees
the existence of a splitting of the form (2.24), given byα0 = A0, β0 = {0}. In general,
the existence of a subalgebraβ0 ⊂ Ker(ad3) which is complementary toA0

>0 in A0 is
a nontrivial question. As is easy to see, a necessary condition for the existence of such a
subalgebra is that

A0
>0 ∩ (Ker(ad3))⊥ = {0} (2.25)
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which in particular implies that

dim(A0
<0) 6 dim(A0 ∩ Ker(ad3)). (2.26)

In the derivation of system (1.2) presented in section 3.2, we have

β0 = A0 ∩ Ker(ad3). (2.27)

Our construction of KdV-type systems will proceed quite similarly to the standard one,
except that we shall use ther-matrix R given by (2.12), (2.13) together with (2.24) to
define the commuting vector fields. In the case when the conditionA0 ⊂ A0 is satisfied
the construction reduces to the standard one.

By definition, the phase space of the KdV-type system is the factor spaceQ/N , where

Q := {L = ∂x + q(x)+3|q(x) ∈ A<k ∩A>0} (2.28)

andN is the group of ‘gauge transformations’ eγ acting onQ according to

eγ : L 7→ eadγ (L) = eγLe−γ L ∈ Q γ (x) ∈ A<0
0 . (2.29)

Let us present a model ofQ/N . Take ad1-graded vector spaceV appearing in a direct
sum decomposition

A<k ∩A>0 = [3,A<0
0 ] + V. (2.30)

DefineQV ⊂ Q by

QV := {L = ∂x + qV (x)+3| qV (x) ∈ V }. (2.31)

Owing to the nondegeneracy condition (2.22) and the grading assumptions, the action ofN
onQ is a free action and the following result holds.

Lemma 2.The submanifoldQV ⊂ Q is a global cross section of the gauge orbits defining
a one-to-one model ofQ/N . When regarded as functions onQ, the components of
qV (x) = qV (q(x)) are differential polynomials, which thus provide a free generating set of
the ring of gauge invariant differential polynomials onQ.

Since this lemma also goes back to [1] (see also [14]),QV is referred to as aDrinfeld–
Sokolov gauge.To construct a hierarchy onQ/N , we first exhibit commuting vector fields
on Q by means of the dressing procedure (recall remark 1). That is for anyb ∈ C(3) in
(2.4), we define commuting vector fields∂

∂tb
onQ, similarly to (2.14), by

∂

∂tb
q := [R(Bb(q)),L] = [Pα(Bb(q)),L] = −[Pβ(Bb(q)),L]

at L = (∂x + q +3) ∈ Q. (2.32)

HereBb(q) is obtained from (2.9) and the splitting (2.24) is used to defineR by (2.12) and
(2.13). The conditions in (2.23) and (2.24) ensure that (2.32) gives a consistent evolution
equation onQ. In order to show this, first note that owing to the requirements (2.23) and
(2.24),Pα projects on a space which is included inA>0. Then, the second equality shows
that ∂

∂tb
q belongs toA>0. Finally, as in the modified case, the third equality is used to show

that ∂
∂tb
q also belongs toA<k.

The evolution equation defined by (2.32) has a gauge invariant meaning. Algebraically
speaking, this means that∂

∂tb
induces a derivation of the ring ofN -invariant differential

polynomials inq. The corresponding geometric statement is that the vector field∂
∂tb

onQ

can be consistently projected onQ/N . The projectability of ∂
∂tb

follows from the uniqueness
property of the formal dressing procedure stated by equation (2.8). This leads to the equality
Bb(eγLe−γ ) = eγ Bb(L)e−γ , whereγ (x) ∈ A<0

0 parametrizes a gauge transformation and
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we put Bb(L) := Bb(q). Then, using the definition of ther-matrix, one has as in the
standard case the property

(R(eγ Bb(L)e−γ )− eγR(Bb(q))e−γ ) ∈ A<0
0 . (2.33)

Using this, it is in fact straightforward to show the projectability of∂
∂tb

.
If we useQV as the model ofQ/N and letπ : Q→ QV denote the natural mapping,

then the projected vector fieldπ∗( ∂∂tb ) onQV is described by an equation of the form

π∗

(
∂

∂tb

)
qV = [R(Bb(qV ))+ ηb(qV ), ∂x + qV +3] (2.34)

whereηb(qV (x)) ∈ A<0
0 is a uniquely determined differential polynomial inqV (x). These

vector fields generate the commuting flows of the KdV-type hierarchy onQV = Q/N .
To deal with the Hamiltonian formalism, we need the following statement.

Property 3.Q in (2.28) is a Poisson submanifold ofM in (2.16) with respect to the Poisson
bracket{ , }R in (2.18).

To prove this, one has to show that ifq(x) is inA<k∩A>0, then the Hamiltonian vector
field obtained from equation (2.20) by the replacement ofj (x) by q(x) is in A<k ∩ A>0.
In the standard case, this is easily done by giving an explicit description of the projectors
Pα⊥ , Pβ⊥ . In the case at hand, we observe the following properties of these projectors

Pα(A) ⊂ A>0 Pα⊥(A) ⊂ A>0 Pβ(A>0) = {0} Pβ⊥(A>0) ⊂ A>0 (2.35)

which are consequences of (2.23) and (2.24). These relations imply by (2.20) that the
Hamiltonian vector field atQ lies in A>0, while it is established in the same way as for
property 1 that it also lies inA<k.

It then immediately follows that the derivative of a local functionalf onQ with respect
to the vector field ∂

∂tb
onQ is given by

∂

∂tb
f = {f,Hb}R (2.36)

whereHb is obtained from (2.10). By the projectability of∂
∂tb

, we know that the right-hand
side of (2.36) must be gauge invariant iff is gauge invariant. SinceHb is a gauge invariant
local functional onQ, by the uniqueness property (2.8), we are naturally led to suspect that
the Poisson bracket{f, g}R of any two gauge invariant local functionals onQ is again
gauge invariant. Indeed, under an infinitesimal gauge transformationδγL = [γ,L] with
γ (x) ∈ A<0

0 , one finds for any two local functionalsf , g onQ that

δγ {f, g}R =
∫

dx

〈
δg

δq
, [γf ,L]

〉
−
〈
δf

δq
, [γg,L]

〉
(2.37)

with

γf =
[
γ,Rδf

δq

]
−R

[
γ,
δf

δq

]
γg =

[
γ,R δg

δq

]
−R

[
γ,
δg

δq

]
. (2.38)

Inspection shows thatγf (x), γg(x) ∈ A<0
0 (compare (2.38) with the infinitesimal version of

equation (2.33)). Henceδγ {f, g}R vanishes iff andg are gauge invariant, proving that the
Poisson bracket of gauge invariant local functionals is gauge invariant.

To summarize the outcome of the above, a Poisson bracket is defined onQ/N by
identifying the local functionals onQ/N with the gauge invariant local functionals on
Q and determining the Poisson bracket on these functionals by (2.18). The KdV-type
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hierarchy onQ/N is generated by the commuting HamiltoniansHb with respect to this
induced Poisson bracket.

In the standard case, for whichA0 ⊂ A0 in addition to (2.23), one can show that our
induced Poisson bracket onQ coincides with the ‘second’ Poisson bracket given in [5]. In
this case one also has an alternative interpretation of the ‘second’ Poisson bracket onQ/N
based on ther-matrix associated with the splittingA = A>0+A<0 (see for example [15]).
However, in the case of a splitting in (2.24) for whichβ0 6= {0} this secondr-matrix does
not even lead to consistent flows onQ, since in such a case the relationA<0 ⊂ A<0 does
not hold. Hence we do not have an alternative interpretation of the second Poisson bracket
in general.

Given the data(A,3, d1, d0;α0, β0) with which we associated a KdV-type system, we
also have the modified KdV-type system corresponding to the data(A,3, d1;α0, β0). This
modified KdV system can be restricted to the subspace of its phase space2 in (2.3) given
by

4 := 2 ∩Q = {L = ∂x + ξ(x)+3|ξ(x) ∈ A<k ∩A>0 ∩A>0}. (2.39)

In fact, 4 ⊂ 2 ⊂ M and4 ⊂ Q ⊂ M are two chains of Poisson submanifolds with
respect to{ , }R in (2.18). One can further check that

dim(A<k ∩A>0 ∩A>0) = dim(A<k ∩A>0)− dim(A<0
0 ) (2.40)

which means that the number of the components ofξ(x) coincides with the number of the
independent KdV fields. The map

µ : 4→ Q/N (2.41)

induced by the natural projectionQ→ Q/N is a generalization of the well known Miura
map. This maps converts the modified KdV-type flows on4 to the KdV-type flows on
Q/N . In the Hamiltonian setting,µ is a Poisson map with respect to the (linear) Poisson
bracket{ , }R on4 and the (nonlinear) Poisson bracket onQ/N obtained as a reduction of
the Poisson bracket{ , }R onQ.

Remark 2. One can naturally extend the action ofN in (2.29) to the manifoldM in
(2.16). Although (like the action onQ) this action ofN onM does not leave the Poisson
bracket{ , }R in (2.18) invariant, it is an ‘admissible’ action in the sense that theN -invariant
functions close under the Poisson bracket. This property permits us to consider Hamiltonian
symmetry reduction of the hierarchy onM, mentioned in remark 1, with respect toN . Then
Q/N ⊂M/N can be interpreted as a Poisson submanifold and the KdV-type hierarchy as
a subsystem of the reduced hierarchy onM/N .

3. Application to nonstandard Gelfand–Dickey hierarchies

In fact, our original motivation for this work was to understand whether the nonstandard
Gelfand–Dickey hierarchy [9–11] defined by (1.2) can be interpreted in the Drinfeld–
Sokolov framework. We explain here that it can indeed be obtained as an example of
the general construction presented in the previous section. It turns out that one needs to
use a nontrivial splitting withβ0 6= {0} in (2.24) to derive this system. For completeness,
we also give the interpretation of the other nonstandard Gelfand–Dickey hierarchy [9–11]
defined by

∂

∂tm
L = [(L

m
n+1 )>0, L] for L =

(
∂n +

n∑
i=1

ui∂
n−i
)
∂. (3.1)
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In this case the input data satisfy the standard conditions, for whichA0 ⊂ A0.
In the next section, we collect known results that will be used in the derivation of the

nonstandard Gelfand–Dickey systems presented in sections 3.2 and 3.3.

3.1. Generalized KP systems

We now recall some basic facts about the standard and nonstandard KP systems from which
the Gelfand–Dickey systems arise by reduction to Poisson submanifolds. For a detailed
exposition, see for example [8, 11] and references therein. Note that in this paper only
the quadratic Poisson brackets will be considered, even though these systems are known to
possess linear Poisson brackets as well.

We denote byD the associative algebra of scalar PDOs of the form

L =
∞∑
i=0

ui∂
n−i ∀n ∈ Z. (3.2)

The transpositionL → Lt = ∑∞
i=0(−∂)n−iui is an anti-involution ofD. The projectors

P>0, P<0, P0, P>0 andP60 on the corresponding associative subalgebras ofD are given by

P>0(L) =
n∑
i=0

ui∂
n−i P<0(L) =

∞∑
i=1

un+i∂−i

P0(L) = un P>0 = P>0− P0 P60 = P<0+ P0.

(3.3)

The Adler trace [16] onD is given by Tr(L) = ∫ dx res(L) with res(L) = un+1. We shall
use the linear functionals onD defined bylX(L) = Tr(LX), whereX is some constant
PDO. For a fixed positive integern, we shall often consider the affine subspaceDn of D,

Dn =
{
L = ∂n +

∞∑
i=1

ui∂
n−i
}
. (3.4)

3.1.1. The standard KP hierarchy.The KP hierarchy is defined with the aid of the
splitting of D into purely differential and PDOs, which yields the antisymmetricr-matrix
R = 1

2(P>0 − P<0). In association withR, there exists a one-parameter family oflocal
quadratic Poisson brackets onD

{lX, lY }νGD(L) = Tr(LXR(LY)−XLR(YL))+ ν
∫

dx (D−1res[L,X])res[L, Y ] (3.5)

where∂x(D−1f ) = f . Note that the constant ambiguity in the definition of(D−1f ) drops
out from formula (3.5), which defines a local Poisson bracket since res[L,X] is a total
derivative. The ‘second’ Adler–Gelfand–Dickey bracket [8] corresponds toν = 0. The
possibility to add the term proportional toν on the right-hand side of (3.5) was apparently
first noticed in [17]. For anyn > 0, Dn ⊂ D is a Poisson submanifold with respect to the
family of brackets in (3.5). For any complex numberc, the local (differential polynomial)
mapFc given onDn by

Fc(L) = ec8Le−c8 8 = D−1u1 (3.6)

which is invertible except forc = 1
n

, is a Poisson map according to

{lX ◦ Fc, lY ◦ Fc}νGD = {lX, lY }νcGD ◦ Fc νc = ν + c(2− nc)(1− nν). (3.7)
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Note thatν = 1
n

is a fixed point for this transformation. The operatorsL ∈ Dn satisfying
the conditionL = P>0(L) form a Poisson submanifold with respect to{ , }νGD for any ν,
whereas those of the form

L = ∂n +
n∑
i=2

ui∂
n−i (3.8)

form a Poisson submanifold for the valueν = 1
n

only.
OnDn, the commuting KP flows†

∂

∂tm
L = [R(L

m
n ), L] = [(L

m
n )>0, L] m = 1, 2, . . . (3.9)

are generated by the HamiltoniansHm(L) = n
m

Tr(L
m
n ) with respect to any of the brackets

in (3.5). Restriction of the KP flows (3.9) to (3.8) gives the standardnth KdV hierarchy.
Let us now write the operatorL = P>0(L) ∈ Dn in the factorized form

L = ∂n +
n∑
i=1

ui∂
n−i = (∂ + ξn)(∂ + ξn−1) . . . (∂ + ξ1) (3.10)

which yields the Miura transformation, each fieldui being expressed as a differential
polynomial in theξi . Then the generalization in [18] of the Kupershmidt–Wilson theorem
[19] asserts that the quadratic bracket{f, g}νGD(L) is equal to the bracket∫

dx
n∑

i,l=1

(
δf

δξi

)
x

(δil − ν)
(
δg

δξl

)
(3.11)

when theui andξi are related through the Miura transformation. Note that this bracket is
invariant under any permutation of theξi and under a global change of sign of them.

3.1.2. The nonstandard KP hierarchy.The relevance of ‘nonstandard’ splittings ofD to
soliton equations was apparently first noticed in [20], see also [9, 21]. The definition of
the nonstandard KP hierarchy of interest here is based on the splitting ofD into purely
differential operators and PDOs containing the constant term. This splitting gives rise to
the nonantisymmetricr-matrix

R̂ = 1
2(P>0− P60). (3.12)

In correspondence with thisr-matrix, two quadraticlocal Poisson brackets have been defined
onD in [10, 11]:

{lX, lY }AO(L) = Tr(LXR̂(LY )−XLR̂(YL))+ Tr([L, Y ]0XL

+[L, Y ](LX)0+ (D−1 res[L, Y ])[X,L]) (3.13)

{lX, lY }BO(L) = Tr(LXR̂(LY )−XLR̂(YL))+ Tr([L, Y ]0LX

+[L, Y ](XL)0− (D−1 res[L, Y ])[X,L]). (3.14)

For any fixedn > 0, Dn ⊂ D is a Poisson subspace with respect to both of the above
Poisson brackets. The two brackets admit different Poisson subspaces with a finite number
of fields. In the case of bracket (3.13), the operatorsLA of the form

LA = ∂n−1+
n−1∑
i=1

ui∂
n−1−i + ∂−1un (3.15)

† Originally, only the hierarchy with the valuen = 1 was called the KP hierarchy.
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form a Poisson submanifold for anyn > 1. In the case of (3.14), the operators

LB =
(
∂n +

n∑
i=1

ui∂
n−i
)
∂ (3.16)

form a Poisson submanifold for anyn > 1.
On the spaceDn, the nonstandard KP hierarchy† is given by the commuting flows

∂

∂tm
L = [R̂(L

m
n ), L] = [(L

m
n )>0, L] m = 1, 2, . . . . (3.17)

These flows are generated by the HamiltoniansHm = n
m

Tr(L
m
n ) with respect to any of the

brackets (3.13), (3.14). In contrast to the standard case, the coefficientu1 of the subleading
term ofL is now dynamical, butH0 := ∫ dx u1 is still constant with respect to the flows.
Restriction of these flows to the sets of operators{LA} in (3.15) and{LB} in (3.16) yields
the nonstandard Gelfand–Dickey hierarchies in (1.2) and (3.1), respectively. In the case (A)
one obtains nontrivial flows forn > 2 only.

There exists a Poisson equivalence between the brackets{ , }A,BO and{ , }νGD with ν = ±1:

{lX ◦ pA, lY ◦ pA}+1
GD = {lX, lY }AO ◦ pA (3.18)

{lX ◦ pB, lY ◦ pB}−1
GD = {lX, lY }BO ◦ pB (3.19)

wherepA, pB are two invertible maps onD defined bypA(L) = ∂−1L andpB(L) = L∂.
This result, given in [24, 18] (see also [25]), allows us to derive the properties of the
brackets{ , }A,BO from familiar properties of the bracket{ , }νGD. In particular, it allows for a
straightforward derivation [18, 26] of generalized Kupershmidt–Wilson theorems for these
brackets. For this purpose, one writes the operatorsLA ∈ pA(P>0(Dn)) in (3.15) and
LB ∈ pB(P>0(Dn)) in (3.16) in a multiplicative form as

LA = ∂−1(∂ + ξn)(∂ + ξn−1) . . . (∂ + ξ1) (3.20)

LB = (∂ + ξn)(∂ + ξn−1) . . . (∂ + ξ1)∂. (3.21)

Then the Kupershmidt–Wilson theorem for{ , }νGD with ν = ±1 and the relations (3.19) and
(3.19) imply that if theui are expressed through theξi by the Miura transformations (3.21)
and (3.21), then the brackets{ , }A,BO on {LA,B} are equal to∫

dx
n∑

i,l=1

(
δf

δξi

)
x

(δil − νA,B)
(
δg

δξl

)
(3.22)

with νA = −νB = 1, respectively. These Miura transformations will be quite useful for us.
Although they intertwine the Poisson brackets, neitherpA or pB converts the standard

Gelfand–Dickey hierarchy into the nonstandard one since the commuting Hamiltonians are
not intertwined by these maps.

Remark 3. It is well known [12] that the quadratic Adler–Gelfand–Dickey bracket is a
version of the Sklyanin bracket and its Jacobi identity depends on the antisymmetry of the
r-matrix R = 1

2(P>0 − P<0). General results on quadratic Poisson brackets on Lie groups
associated with nonantisymmetricr-matrices have been obtained in [27], and equivalent
results are found in [28] in the context of associative algebras, see also [29, 30] which deal
with special cases. The brackets{ , }νGD as well as the brackets{ , }A,BO are identified in [25]
as special cases of the ‘(a, b, c, d)-scheme’ of [27], with nonlocal operatorsa, b, c, d. For

† The alternative term ‘modified’ KP hierarchy is often used in the literature, especially in then = 1 case, see
for example [22, 23].
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the brackets{ , }A,BO an equivalent identification in terms of the notation of [28] is contained
in [11].

3.2. Nonstandard Gelfand–Dickey system of type A

Now we show that the nonstandard Gelfand–Dickey system in (1.2) can be recovered within
the generalized Drinfeld–Sokolov formalism developed in section 2 with an appropriate
choice of the sextuplet(A,3, d1, d0, ;α0, β0). Our demonstration below shall be purely
deductive; the right choice of data was originally found by a long explicit inspection of the
linear problem forL in (1.2), which involved some guesswork too.

We consider the algebraA = sl(n) ⊗ C[λ, λ−1]. We denote byei,j the n × n matrix
with 1 at the intersection of linei and columnj and 0 everywhere else, and introduce the
two compatible gradations ofA

d1 = (n− 1)λ∂λ + adKA KA =
n∑
k=1

n+ 1− 2k

2
ek,k (3.23)

d0 = λ∂λ. (3.24)

Note thatd0 is the homogeneous gradation as in the derivation of the standard system (1.1)
[1], but d1 is not the principal gradation. In our notation, the principal gradation would
readnλ∂λ + adKA. We shall refer to this choice later as the standard case. The gradations
d0 andd1 in (3.23), (3.24) satisfy the conditions in (2.23), but do not satisfy the condition
A0 ⊂ A0. Then forn > 3 we choose†

3 :=
n−1∑
k=1

ek,k+1+ λ(en−1,1+ en,2) (3.25)

which hasd1-grade one. This differs from the standard choice [1] by the entries which
contain the loop parameterλ. One can check that3 is a regular semisimple element, that
is to sayA = Ker(ad3)⊕ Im (ad3), and Ker(ad3) ⊂ A is an Abelian subalgebra. The
vector space Ker(ad3) is generated by the homogeneous elements3m ∈ Am given by

3l(n−1)+r = (2λ)l
(
3r − δr,n−1

2(n− 1)λ

n
In

)
with 16 r 6 n− 1 l ∈ Z. (3.26)

The splitting ofA0 of the form in (2.24) is in this case defined by

β0 := (Ker(ad3))0 = span{30}. (3.27)

3.2.1. The modified KdV-type system.First we shall identify the modified KdV-type system
associated with the above sextuplet as the modified nonstandard Gelfand–Dickey system of
type A based on the factorized Lax operator in (3.21). An element of the modified KdV
phase space4 in (2.39) can now be parametrized by

ξ(x) =
n∑
k=1

(ξk − σ)ek,k + λ(ξ1+ ξn)en,1 σ = 1

n

n∑
k=1

ξk. (3.28)

The explicit evaluation of the Poisson bracket (2.18) on4 yields exactly the bracket in
(3.22) that corresponds to the Miura map for the bracket{ , }AO. The identification of
the conserved quantities can be performed through the linear problem and the elimination

† The n = 2 case is special and shall be treated separately.
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procedure following the lines of [7]. If9 = (ψ1, ψ2, . . . , ψn)
t then one obtains from the

linear problemL9 = 0 the eigenvalue equation

(∂ − σ)−1(∂ + ξn − σ)(∂ + ξn−1− σ) . . . (∂ + ξ1− σ)ψ1 = 2(−1)n−1λψ1 (3.29)

which is equivalent to

Lψ̃1 = ∂−1(∂ + ξn)(∂ + ξn−1) . . . (∂ + ξ1)ψ̃1 = 2(−1)n−1λψ̃1

with ψ̃1 := e−(D
−1σ)ψ1. (3.30)

According to section 2.1, the commuting Hamiltonians of the modified KdV-type system
can be chosen asHk =

∫
dx hk(x) where eadF (L) = ∂x +3+

∑∞
m=0 hm(x)3−m is defined

by (2.6). Thenψ̃1 may then be computed in two different ways, fromL9 = 0 and from
(3.30), along the lines of [7]. By comparison of the two results, one obtains

H0 = 1

n− 1

∫
dx

( n∑
k=1

ξk

)
Hm = −am

m
(−1)m Tr(L

m
n−1 ) for m > 1

(3.31)

with am = n if m is zero modulo(n − 1), and am = 1 in the other cases. Except for
normalization, the HamiltoniansHm for m > 1 are thus identical to theHm that generate
the flows in (1.2) andH0 gives the conserved chargeH0 mentioned after (3.17). This proves
the equivalence of the two modified systems.

3.2.2. The KdV-type system.We shall now identify the generalized KdV system that results
from the construction of section 2.2 using the above sextuplet as the nonstandard Gelfand–
Dickey system in (1.2). The nondegeneracy condition (2.22) holds in our case since3 is
a regular element. The variableq(x) defined by (2.28) has almost the same form as in the
standard case (lower triangular matrix including the diagonal), up to the addition of one
field,

q(x) =
∑

n>i>j>1

qij (x)eij + λq̃(x)en1. (3.32)

The gauge algebraA<0 ∩ A0 is exactly the same as in the standard case (λ-independent
strictly lower triangular matrices). Thus we may use our knowledge of the standard
Drinfeld–Sokolov gauges, and parametrize the phase spaceQ/N of the KdV system by the
Drinfeld–Sokolov gauge sliceQV in (2.31) whose general element is written as

qV (x) = 2λv1en,1+
n−1∑
k=1

(−1)n−kvn+1−ken,k. (3.33)

Such a gauge is usually referred to as a horizontal gauge. From the linear problemL9 = 0
for L ∈ Q (2.28), we obtain a gauge invariant eigenvalue equation onψ1, which in the
Drinfeld–Sokolov gauge becomes

(∂ − v1)
−1

(
∂n +

n∑
k=2

vk∂
n−k
)
ψ1 = 2(−1)n−1λψ1 (3.34)

or equivalently

Lψ̃1 =
(
∂n−1+

n−1∑
k=1

uk∂
n−1−k + ∂−1un

)
ψ̃1 = 2(−1)n−1λψ̃1 ψ̃1 = e−(D

−1v1)ψ1. (3.35)
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The uk have differential polynomial expressions in terms of thevk. These relations are
invertible and thevk are also differential polynomials of theuk. Hence the points ofQV may
be parametrized by the functionsuk. The correspondence between the two parametrizations
of L in (3.30) and (3.35) provides a model for the Miura mapµ : 4 → Q/N = QV

in (2.41), which is a Poisson map when4 is equipped with the linear bracket (2.18) and
Q/N = QV is equipped with the nonlinear bracket obtained as the reduction of the linear
bracket onQ. Since this map is given by just the factorization ofL, using the identification
between the linear bracket on4 with the bracket in (3.22) that appears in the generalized
Kupershmidt–Wilson theorem for the bracket{ , }AO (3.13), we conclude that the nonlinear
bracket onQ/N = QV coincides with the bracket{ , }AO on the set of the Lax operators
L = LA in (3.15). The identification between the respective sets of commuting Hamiltonians
has already been established in (3.31).

3.2.3. The casen = 2. This case is slightly different from the generic one because of the
form of3, now we choose3 = e1,2+λ2e2,1. The element3 is semisimple and regular with
Ker(ad3) = span{λk3|k ∈ Z}. Apart from this, the sextuplet(A,3, d1, d0;α0, β0) does
not differ from the generic case. We briefly describe the identification of the associated
KdV-type system with the nonstandard Gelfand–Dickey system in (1.2) forn = 2. A
convenient Drinfeld–Sokolov gauge is defined by

qV (x) = (−λu1− 1
4(4u2+ 2u1x − u2

1))e2,1. (3.36)

From the linear problemL9 = 0, we obtain the eigenvalue equation onψ1(
∂2+ u2+ u1x

2
− u

2
1

4
+ λu1

)
ψ1 = λ2ψ1 (3.37)

or equivalently

Lψ̃1 = (∂ + u1+ ∂−1u2)ψ̃1 = 2λψ̃1 ψ̃1 = exp(−λx − 1
2D
−1u1)ψ1. (3.38)

Thanks to the low number of fields, the Poisson brackets of theu’s may easily be computed
by reduction of (2.18), and coincide with those obtained from the bracket in (3.13). The
identification of the commuting Hamiltonians is obtained as in the other cases.

Remark 4. Another example for which the technique developed in section 2 applies
is the following. The algebraA in the sextuplet(A,3, d1, d0, ;α0, β0) is now A =
sl(n + 1) ⊗ C[λ, λ−1], but we keep the same matrix3 of equation (3.25), and the same
gradations (3.23), (3.24) as before. Clearly,3 is still a semisimple element. A basis for
(Ker(ad3))0 is now given by the two elements30 in (3.26) and� = en+1,n+1− 1

n

∑n
k=1 ek,k,

and we take

β0 := span{30}. (3.39)

A Drinfeld–Sokolov gauge may be parametrized by

qV (x) = 2λ

(
v1− ϑ

n

)
en,1+

n−1∑
k=1

(−1)n−kvn+1−ken,k + ϑ�+ (−1)nϕen,n+1+ χen+1,1.

(3.40)

Then the standard elimination procedure leads from the linear problemL9 = 0 to the
eigenvalue equation onψ1

(∂ − v1)
−1

((
∂ − ϑ

n

)n
+

n∑
k=2

vk

(
∂ − ϑ

n

)n−k
+ ϕ(∂ − ϑ)−1χ

)
ψ1 = 2(−1)n−1λψ1

(3.41)
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or equivalently, withψ̃1 = e−(D
−1v1)ψ1,

Lψ̃1 =
(
∂n−1+

n−1∑
k=1

uk∂
n−1−k + ∂−1un + ∂−1ϕ(∂ + w)−1χ

)
ψ̃1 = 2(−1)n−1λψ̃1. (3.42)

The fieldsuk andw have invertible differential polynomial expressions in terms of thevk
andϑ . It is not hard to check that the nonstandard KP equations (3.17) define consistent
flows for the operatorL in (3.42). Moreover, the fieldw does not evolve under these
flows, and may be set to zero. Then, if one introduces a field8 which is a primitive ofϕ,
8 = (D−1ϕ), the Lax operatorL may be brought to the form

L = ∂n−1+
n−1∑
k=1

uk∂
n−1−k + ∂−1(un −8χ)+8∂−1χ (3.43)

which is one of the Poisson subspaces of the bracket (3.13) given in [11]. The restricted
Poisson bracket is nonlocal in this parametrization [11]. One should note that the set of
Lax operatorsL in (3.42) also defines a Poisson subspace of the bracket (3.13), which may
be extended to alocal bracket on the set of fields{uk,w, ϕ, χ}. Finally, it is clear that
using the natural embedding ofsl(n) into sl(n+m) for anym > 1 while keeping the same
element3, one would reach a Lax operator containingm-component vector versions ofϕ
andχ . More generally, constrained nonstandard matrix KP systems having Lax operators
similar in form toL in (3.42) can also be derived by a slight modification of this example.

Remark 5.Restricting to the casen = 2l + 1, we note that the element3 in (3.25) may be
conjugated to

3̂ =
l∑
i=1

ei,i+1−
2l∑

i=l+1

ei,i+1− λe2l,1+ λe2l+1,2 (3.44)

which is thus semisimple and hasd1-grade one. We then consider the involutionζ of the
algebraA defined on some elementX by

X 7→ ζ(X) = −ηXtη η =
2l+1∑
i=1

ei,2l+2−i . (3.45)

The elements inA invariant under this involution form the loop algebra ofso(2l + 1) and
3̂ is an invariant element. The gradationd1 in (3.24) and the homogeneous gradationd0

both commute with the involutionζ . Moreover, ther-matrix R in (2.13) with α0 as in
(2.24) andβ0 as in (3.27) also commutes withζ . Therefore, using an invariant element
b ∈ C(3), one may restrict the flow (2.32) to those elementsq which are invariant under
ζ . The mapPβ0 is identically zero on the invariant subalgebra. As a consequence, the
restricted nonstandard hierarchy is just the standard Drinfeld–Sokolov hierarchy [1] based
on the algebraso(2l+1)⊗C[λ, λ−1], whose Lax operator satisfies∂−1Lt∂ = L. If n = 2l,
then a reduction of (1.2) to Lax operators satisfying∂−1Lt∂ = −L is possible [9], but in
this case we do not have an interpretation in the Drinfeld–Sokolov approach at present.
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3.3. Nonstandard Gelfand–Dickey system of type B

The nonstandard Gelfand–Dickey hierarchy of the type in (3.1) can be recovered within
the usual Drinfeld–Sokolov formalism [4, 5] with an appropriate choice of the quadruplet
(A,3, d1, d0).

We considerA = sl(n)⊗ C[λ, λ−1] endowed with the two compatible gradations

d1 = nλ∂λ + adKB KB =
n∑
k=1

n+ 1− 2k

2
ek,k (3.46)

d0 = 2λ∂λ + adK K = 1− n
n

en,n + 1

n

n−1∑
k=1

ek,k. (3.47)

Hered1 is the principal gradation, butd0 is not the homogeneous gradation. The assumptions
in (2.23) as well as the conditionA0 ⊂ A0 are satisfied. We choose for3 the standard
regular semisimple element ofd1-grade one:

3 =
n−1∑
k=1

ek,k+1+ λen,1. (3.48)

The Abelian algebra Ker(ad3) is generated by the matrices3m for m not a multiple ofn.

3.3.1. The modified KdV-type system.We wish to identify the modified KdV-type system
defined by the above quadruplet with the system belonging to the factorized Lax operator,
of ordern, of the formL = LB in (3.16). For this we now parametrize the phase space4

in (2.39) by

ξ(x) =
n−1∑
k=1

(ξk − σ)ek,k − σen,n σ = 1

n

n−1∑
k=1

ξk. (3.49)

The explicit evaluation of the Poisson bracket (2.18) on4 yields exactly the bracket given in
(3.22). The linear problemL9 = 0, where9 = (ψ1, ψ2, . . . , ψn)

t , leads to the eigenvalue
equation

Lψ̃n = (∂ + ξn−1)(∂ + ξn−2) . . . (∂ + ξ1)∂ψ̃n = (−1)nλψ̃n (3.50)

with ψ̃n = e−(D
−1σ)ψn. The result of the dressing procedure in (2.6) applied toL ∈ 4 may

be parametrized as eadF (L) = ∂x +3+
∑

0<m6=pn hm(x)3
−m. Then one finds

Hm =
∫

dx hm(x) = − 1

m
(−1)n Tr(L

m
n ) (3.51)

whereby the identification of the respective modified systems is complete.

3.3.2. The KdV-type system.In order to identify the KdV-type system associated with
the above quadruplet as the corresponding nonstandard Gelfand–Dickey system, we now
parametrize the elements of a convenient Drinfeld–Sokolov gaugeQV in (2.31) as

qV (x) =
n−1∑
k=1

v1

n− 1
ek,k − v1en,n −

n−1∑
k=2

(−1)k+1vken−1,n−k. (3.52)

From the linear problemL9 = 0, we obtain the eigenvalue equation onψn((
∂ + v1

n− 1

)n−1

+
n−1∑
k=2

vk

(
∂ + v1

n− 1

)n−1−k )
(∂ + v1)ψn = (−1)nλψn (3.53)
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or equivalently

Lψ̃n =
(
∂n−1+

n−1∑
k=1

uk∂
n−1−k

)
∂ψ̃n = (−1)nλψ̃n ψ̃n = e(D

−1v1)ψn. (3.54)

Using the same argument as in section 3.2.2, we conclude that the nonlinear bracket on
Q/N = QV , parametrized by the functionsuk, is the same as the bracket obtained from
(3.14). This establishes the desired identification.

4. Discussion

The Gelfand–Dickey system (1.1) and its variants in (1.2) and (3.1) are reductions of the
KP hierarchy and its nonstandard counterpart. They represent three distinct generalized
KdV hierarchies whose flows are Hamiltonian with respect to the same nonlinear Poisson
bracket structure given by theWn⊕U(1) classical extended conformal algebra. Drinfeld and
Sokolov [1] showed how to view the Gelfand–Dickey hierarchy in an affine Lie algebraic
setting. Their derivation used the grade-one element of the principal Heisenberg subalgebra
of the loop algebrasl(n) ⊗ C[λ, λ−1] in a Hamiltonian reduction procedure in which the
interplay between the homogeneous and the principal gradations played an important role.
In this paper, we found that the nonstandard Gelfand–Dickey hierarchy of type B (3.1)
admits a similar derivation in which the homogeneous gradation is replaced by another
gradation. In this way, the system in (3.1) is interpreted as a special case of the systems
obtained by the generalized Drinfeld–Sokolov reduction procedure defined in [4], which
associates a KdV-type system with a quadruplet(A,3, d1, d0), where the gradationsdi
of the loop algebraA satisfy that every element with positived0-grade is positive in the
d1-gradation too.

More interestingly, we found that the Gelfand–Dickey system of type A (1.2) cannot
be obtained in the framework of [4]. In fact, we gave a matrix Lax formulation for the
hierarchy (1.2) by using two gradationsd0 and d1 which satisfy weaker conditions than
those above. In particular, there may exist elements of the loop algebraA with positived0

grade and zerod1 grade, provided they are not orthogonal to the kernel of the adjoint action
of 3 ∈ A. The general Lie algebraic setting which we used could be applied to other cases
as well. A series of such applications was mentioned in remark 4.

The kernel of the regular semisimple element3 in (3.25) is a maximal Abelian
subalgebra of the loop algebraA = sl(n)⊗ C[λ, λ−1], which would become a Heisenberg
algebra after introducing the central charge. The inequivalent Heisenberg subalgebras are
classified by the conjugacy classes of the Weyl group ofsl(n) [31], which are in one-
to-one correspondence with the partitions ofn. The Heisenberg subalgebra to which3
belongs corresponds in the Kac–Peterson classification to the conjugacy class in the Weyl
group associated with the partition(n− 1, 1). Indeed, after a suitable rescaling of the loop
parameter,3 may be shown to be equivalent to

3̃ =
n−2∑
i=1

ei,i+1+ λ̃en−1,1 (4.1)

which is a generator of the principal Heisenberg algebra of the subalgebrasl(n − 1) ⊗
C[λ̃, λ̃−1]. As well as the constrained version (1.2) of the nonstandard KP hierarchy derived
in section 3.2, there exists a constrained version of the standard KP hierarchy associated
with the same Heisenberg subalgebra ofA. This constrained KP hierarchy [32] has a scalar
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Lax operator of the form

L̃ = ∂n−1+ ũ1∂
n−2+ · · · + ũn−1+ ϕ̃(∂ + w̃)−1χ̃ with w̃ = −ũ1 (4.2)

whose derivation in the Drinfeld–Sokolov framework is described in [7]. The derivation
uses the element̃3 ∈ A and the homegeneous gradation together with a gradationd̃1 for
which the conditionA0 ⊂ A0 is satisfied. More precisely, in [7] thegl(n) case is considered
for which w̃ in (4.2) is independent of̃u1; neither ũ1 nor w̃ has nontrivial dynamics. By
settingw̃ = 0 and conjugating bỹϕ−1, which is a singular map at the zeros ofϕ̃, one may
convert the flows and the Poisson brackets of the system based onL̃ in (4.2) into those of
the system in (1.2) (see [10]). Note also that the mappA : L̃→ ∂−1L̃ connects the second
Poisson bracket (but not the flows) of the system in (4.2) to that of the system mentioned
in remark 4. It should be possible to interpret these connections between the standard and
nonstandard constrained KP hierarchies as consequences of their closely related affine Lie
algebraic origin.

Finally, we wish to stress that in our opinion the most interesting problem arising from
this paper is to find new input data whereby the general construction of section 2 might
give rise to new integrable hierarchies. As another problem which remains to be settled,
let us also remark that although the nonstandard Gelfand–Dickey hierarchies of type A are
known from the scalar Lax formalism to be bi-Hamiltonian [10], we have not yet been able
to identify the first Poisson bracket in the matrix Lax formalism.
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